Installing Simulia 2017: Abaqus, Isight, Tosca, fe-safe on Windows 10

Installing Simulia 2017 on Windows 10 Tutorial Abaqus Tosca Isight fe-safe   This is the easiest install yet! The only real difficulty is finding and running the appropriate executables in the correct order. Read on for a step by step tutorial and some suggestions along the way.

Simulia 2015 Eye Candy

Please share your coolest animations from 2015. Link to access playlist. Here are a couple of guidelines: 1. Please share only your personally created content from 2015. 2. Simulia only: Abaqus, Isight, Tosca, Fe-Safe, Simpoe 3. Feel free to post multiple videos. 4. Suggested comments: Name, Company, brief description of simulation if not obvious. Since YouTube doesn’t allow comments on a playlist please place any comments here:

Parametric Design Optimization with Isight and Abaqus

Abaqus is itself a powerful tool for Finite Element Analysis, but coupling it with Dassault Systèmes Isight can open up new worlds of capabilities when it comes to design optimization. Isight is a system integration tool that is designed to execute other engineering software codes; providing inputs, executing models, parsing results, linking them into integrated

Lacrosse Head Topology Optimization Part 2: Designing for 3D Printing

Topology optimization creates an organic geometry flowing material to where it is needed and eroding where it is not efficient. This technology is ideally suited to the limited manufacturing constraints that 3D printing offers. 3D printed parts by virtue of their layer by layer additive manufacturing approach have complex material properties. These properties are similar to wood where there is a stiff direction (with the grain) and a weak direction (across the grain). To gain the highest performance in 3D printed parts these material properties must be considered in the design process.

Design Requirements: Faster, Better, Cheaper…pick 2

One NASA adage is: Better, Faster, Cheaper…pick 2 The premise is that the third desire is mutually exclusive. This is obviously an oversimplification of the process however it quickly brings to light the interplay between goals. I like to think of design requirements from an optimization standpoint. There are constraints and goals. Constraints are those that the design must meet otherwise it is not a viable product. Goals are parameters that you would like to improve.

Lacrosse Head Topology Optimization

Interview related to this work https://www.youtube.com/watch?v=vGeig6tIvyU&feature=youtu.be Introduction In this post I will go through the methodology to perform topology optimization with Catia (CAD), Abaqus (FEA) and Tosca (Topology Optimization). Topology optimization evolves the geometry to remove unneeded material effectively minimizing weight. This is carried out by automatically scaling individual element’s density and stiffness based on the stress state of the previous simulation. This is an iterative process where material flows to regions to satisfy constraints and minimize the objective function. The created geometry represents the maximum allowable geometry and would be a heavy stiff head. High stiffness is desirable however weight is not. This will be the basis for the objective function of the optimization. The basic workflow is to create CAD geometry with the maximum allowable footprint. Create a standard FEA simulation. Create a topology optimization setting goals and constraints. You can download the files created in this article freely below.

Simulia Community Conference Proceedings 2015

Simulia Community Conference Proceedings May 18–21, 2015 Berlin, Germany To access the conference proceedings click here. Below is simply a reprint of the contents to aide in search-ability.

Engineering Software

CATIA is the World's Leading Solution for Product Design and Experience. It is used by leading organizations in all industries to develop the products we see and use in our everyday lives. CATIA delivers the unique ability not only to model any product, but to do so in the context of its real-life behavior: design