CAD

Home/CAD

Unboxing Views in CAD

When working in any CAD environment, quickly and intuitively being able to manipulate views will improve efficiency. The basic premise is with the use of the number pad, shortcuts and if you want some scripting most CAD programs can be customized to speed up your workflow.

Dental X-Ray to Bite Simulation

Designing a medical device commonly starts with the healthy or diseased anatomy. Geometry without significant simplifications typically comes from various 3D scanning technologies such as CT or MRI. Here we will go through turning scanned point cloud data into usable NURBS CAD geometry with Catia. FOR FREE ACCESS THE FILES CREATED FOR THIS POST PLEASE CLICK HERE

Femur CT Scan to Finite Element Analysis

Introduction The purpose of this post is to explain how to utilize medical imaging data in the development of a prosthetic implant. The two most common medical imaging technologies are CT and MRI. Both export a stack of 2D grey scale images over a 3D domain in the standard Digital Imaging and Communications in Medicine (DICOM) format. In this post I will go through the development of geometric (CAD) and mechanical (FEA) models based off anatomical imaging data. Through this workflow designs can be tuned for specific biometry based on realistic loading scenarios. As always all of the models used to develop this post are available at the end of the article.

Lacrosse Head Topology Optimization

Interview related to this work https://www.youtube.com/watch?v=vGeig6tIvyU&feature=youtu.be Introduction In this post I will go through the methodology to perform topology optimization with Catia (CAD), Abaqus (FEA) and Tosca (Topology Optimization). Topology optimization evolves the geometry to remove unneeded material effectively minimizing weight. This is carried out by automatically scaling individual element’s density and stiffness based on the stress state of the previous simulation. This is an iterative process where material flows to regions to satisfy constraints and minimize the objective function. The created geometry represents the maximum allowable geometry and would be a heavy stiff head. High stiffness is desirable however weight is not. This will be the basis for the objective function of the optimization. The basic workflow is to create CAD geometry with the maximum allowable footprint. Create a standard FEA simulation. Create a topology optimization setting goals and constraints. You can download the files created in this article freely below.

Geeking Out on Pinewood Derby Car Design

Introduction In this post I will setup a simple parametric Catia model of a Pinewood Derby Car (PWD-C). All files are available for download at the end of the post including a PDF of the drawing template. The motivation to create this model are: Introduce basic Catia workflow Develop parametric CAD models with dynamically linked assemblies and drawings Quickly design with drawings automatically updated to trace with a band saw Introduce engineering tools to my son (*never too early to brainwash my minion*) In this post I’ll be going over: parts, assembly and drawing creation. Then shaping of the body will be performed using splines and style curves where you will see several designs created by Pete, my 7 year old son. (*No childhood memories were harmed in the making of this post. Aside from setting up the Catia model and running the band saw my 7 year old son Pete did all real the work.*)

Simulia Community Conference Proceedings 2015

Simulia Community Conference Proceedings May 18–21, 2015 Berlin, Germany To access the conference proceedings click here. Below is simply a reprint of the contents to aide in search-ability.

Engineering Software

CATIA is the World's Leading Solution for Product Design and Experience. It is used by leading organizations in all industries to develop the products we see and use in our everyday lives. CATIA delivers the unique ability not only to model any product, but to do so in the context of its real-life behavior: design